Типы подключения к локальной сети для чайников. Как работают интернет провайдеры. Диапазоны адресов частных сетей

  • 21.02.2024

То есть в узком смысле - это глобальное сообщество малых и больших сетей. В более широком смысле - это глобальное информационное пространство, хранящее огромное количество информации на миллионах компьютеров, которые обмениваются данными.

В 1969 году, когда был создан Интернет, эта сеть объединяла всего лишь четыре хост-компьютера, а сегодня их число измеряется десятками миллионов. Каждый компьютер, подключенный к Интернету, - это часть Сети.

Для того чтобы начать с наиболее привычной всем схемы, рассмотрим, как подключается к Интернету домашний компьютер, и проследим, по каким каналам путешествует информация, передаваемая и принимаемая нами из Сети. Если вы выходите в Интернет с домашнего компьютера, то, скорее всего, используете модемное подключение (рис. 1).

В принципе, соединение с провайдером может идти по различным каналам: по телефонной линии, по выделенной линии, на основе беспроводной или спутниковой связи, по сети кабельного телевидения или даже по силовым линиям - все эти альтернативные варианты показаны на рис. 1 .

Чаще всего это так называемое временное (сеансовое) соединение по телефонной линии. Вы набираете один из телефонных номеров, который предоставил вам провайдер, и дозваниваетесь на один из его модемов. На рис. 1 показан набор модемов провайдера, так называемый модемный пул. После того как вы соединились с вашим ISP (Internet Service Provider)-провайдером, вы становитесь частью сети данного ISP. Провайдер предоставляет своим пользователям различные сервисы, электронную почту, Usenet и т.д.

Каждый провайдер имеет свою магистральную сеть, или бэкбоун . На рис. 1 мы условно изобразили магистральную сеть некоего провайдера ISP-A. Его магистральная сеть показана зеленым цветом.

Обычно ISP-провайдеры - это крупные компании, которые в ряде регионов имеют так называемые точки присутствия (POP, Point of Presence), где происходит подключение локальных пользователей.

Обычно крупный провайдер имеет точки присутствия (POP) в нескольких крупных городах. В каждом городе находятся аналогичные модемные пулы, на которые звонят локальные клиенты этого ISP в данном городе. Провайдер может арендовать волоконно-оптические линии у телефонной компании для соединения всех своих точек присутствия (POP), а может протянуть свои собственные волоконно-оптические линии. Крупнейшие коммуникационные компаний имеют собственные высокопропускные каналы. На рис. 1 мы показали опорные сети двух Интернет-провайдеров. Очевидно, что все клиенты провайдера ISP-А могут взаимодействовать между собой по собственной сети, а все клиенты компании ISP-В - по своей, но при отсутствии связи между сетями ISP-A и ISP-B клиенты компании «A» и клиенты компании «В» не могут связаться друг с другом. Для реализации данной услуги компании «A» и «B» договариваются подключиться к так называемым точкам доступа (NAP - Network Access Points) в разных городах, и трафик между двумя компаниями течет по сетям через NAP. На рис. 1 показаны магистральные сети только двух ISP-провайдеров. Аналогично организуется подключение к другим магистральным сетям, в результате чего образуется объединение множества сетей высокого уровня.

В Интернете действуют сотни крупных Интернет-провайдеров, их магистральные сети связаны через NAP в различных городах, и миллиарды байтов данных текут по разным сетям через NAP-узлы.

Если вы пользуетесь Интернетом в офисе, то, скорее всего, вы подключены к локальной сети (LAN - Local Area Network). В этом случае рассмотренная нами схема несколько видоизменяется (рис. 2). Сеть организации обычно отделена от внешнего мира определенной службой защиты информации, которая на нашей схеме условно показана в виде кирпичной стены. Варианты подключения к провайдеру могут быть различными, хотя чаще всего это выделенная линия.

Поскольку невозможно схематически отразить всю совокупность сетей Интернета, ее часто изображают в виде размытого облака, выделяя в нем лишь основные элементы: маршрутизаторы, точки присутствия (POP) и места доступа (NAP).

Скорость передачи информации на различных участках Сети существенно различается. Магистральные линии, или бэкбоуны, связывают все регионы мира (рис. 5) - это высокоскоростные каналы, построенные на основе волоконно-оптических кабелей. Кабели обозначаются OC (optical carrier), например OC-3, OC-12 или OC-48. Так, линия OC-3 может передавать 155 Мбит/с, а OC-48 - 2488 Мбит/с (2,488 Гбит/с). В то же время получение информации на домашний компьютер с модемным подключением 56 K происходит со скоростью всего 56 000 бит/с.

Как происходит передача информации в Интернете

Маршрутизаторы

Как же происходит передача информации по всем этим многочисленным каналам? Как сообщение может быть доставлено с одного компьютера на другой через весь мир, пройдя несколько различных сетей за долю секунды? Для того чтобы объяснить этот процесс, необходимо ввести несколько понятий и прежде всего рассказать о работе маршрутизаторов. Доставка информации по нужному адресу невозможна без маршрутизаторов, определяющих, по какому маршруту передавать информацию. Маршрутизатор - это устройство, которое работает с несколькими каналами, направляя в выбранный канал очередной блок данных. Выбор канала осуществляется по адресу, указанному в заголовке поступившего сообщения.

Таким образом, маршрутизатор выполняет две различные, но взаимосвязанные функции. Во-первых, он направляет информацию по свободным каналам, предотвращая «закупорку» узких мест в Сети; во-вторых, проверяет, что информация следует в нужном направлении. При объединении двух сетей маршрутизатор включается в обе сети, пропуская информацию из одной в другую, и в некоторых случаях осуществляет перевод данных из одного протокола в другой, при этом защищая сети от лишнего трафика. Эту функцию маршрутизаторов можно сравнить с работой патрульной службы, которая с вертолета ведет наблюдение за движением в городе, контролирует общую ситуацию с поломками и заторами на дорогах и сообщает о наиболее загруженных участках трассы, чтобы водители выбирали оптимальный маршрут и не попадали в пробки.

Протоколы Интернета

ерейдем теперь к рассмотрению способов передачи информации в Интернете. Для этого необходимо ввести такое понятие, как протокол. В широком смысле протокол - это заранее оговоренное правило (стандарт), по которому тот, кто хочет использовать определенный сервис, взаимодействует с последним. Применительно к Интернету протокол - это правило передачи информации в Сети.

Следует различать два типа протоколов: базовые и прикладные. Базовые протоколы отвечают за физическую пересылку сообщений между компьютерами в сети Интернет. Это протоколы IP и TCP. Прикладными называют протоколы более высокого уровня, они отвечают за функционирование специализированных служб. Например, протокол http служит для передачи гипертекстовых сообщений, протокол ftp - для передачи файлов, SMTP - для передачи электронной почты и т.д.

Набор протоколов разных уровней, работающих одновременно, называют стеком протоколов. Каждый нижележащий уровень стека протоколов имеет свою систему правил и предоставляет сервис для вышележащих.

Такое взаимодействие можно сравнить со схемой пересылки обычного письма. Например, директор фирмы «А» пишет письмо и отдает его секретарю. Секретарь помещает письмо в конверт, надписывает адрес и относит конверт на почту. Почта доставляет письмо в почтовое отделение. Почтовое отделение связи доставляет письмо получателю - секретарю директора фирмы «B». Секретарь распечатывает конверт и передает письмо директору фирмы «В». Информация (письмо) передается с верхнего уровня на нижний, обрастая на каждой стадии дополнительной служебной информацией (пакет, адрес на конверте, почтовый индекс, контейнер с корреспонденцией и т.д.), которая не имеет отношения к тексту письма.

Нижний уровень - это уровень почтового транспорта, которым письмо перевозится в пункт назначения. В пункте назначения происходит обратный процесс: корреспонденция извлекается, считывается адрес, почтальон несет конверт секретарю фирмы «B», который достает письмо, определяет его срочность, важность и в зависимости от этого передает информацию выше. Директора фирм «А» и «Б», передавая друг другу информацию, не заботятся о проблемах пересылки этой информации, подобно тому как секретаря не волнует, как доставляется почта.

Аналогично каждый протокол в стеке протоколов выполняет свою функцию, не заботясь о функциях протокола другого уровня.

На нижнем уровне, то есть на уровне TCP/IP , используется два основных протокола: IP (Internet Protocol - протокол Интернета) и ТСР (Transmission Control Protocol - протокол управления передачей).

Архитектура протоколов TCP/IP предназначена для объединенной сети. Интернет состоит из разнородных подсетей, соединенных друг с другом шлюзами. В качестве подсетей могут выступать разные локальные сети (Token Ring, Ethernet и т.п.), различные национальные, региональные и глобальные сети. К этим сетям могут подключаться машины разных типов. Каждая из подсетей работает в соответствии со своими принципами и типом связи. При этом каждая подсеть может принять пакет информации и доставить его по указанному адресу. Таким образом, требуется, чтобы каждая подсеть имела некий сквозной протокол для передачи сообщений между двумя внешними сетями.

Разобраться в работе протоколов поможет схема на рис. 6 . Предположим, имеется некое послание, отправляемое по электронной почте. Передача почты осуществляется по прикладному протоколу SMTP, который опирается на протоколы TCP/IP. Согласно протоколу TCP, отправляемые данные разбиваются на небольшие пакеты фиксированной структуры и длины, маркирующиеся таким образом, чтобы при получении данные можно было бы собрать в правильной последовательности.

Обычно длина одного пакета не превышает 1500 байт. Поэтому одно электронное письмо может состоять из нескольких сотен таких пакетов. Малая длина пакета не приводит к блокировке линий связи и не позволяет отдельным пользователям надолго захватывать канал связи.

К каждому полученному TCP-пакету протокол IP добавляет информацию, по которой можно определить адреса отправителя и получателя. На рис. 6 это представлено как помещение адреса на конверт. Для каждого поступающего пакета маршрутизатор, через который проходит какой-либо пакет, по данным IP-адреса определяет, кому из ближайших соседей необходимо переслать данный пакет, чтобы он быстрее оказался у получателя, - то есть принимает решение об оптимальном пути следования очередного пакета. При этом географически самый короткий путь не всегда оказывается оптимальным (быстрый канал на другой континент может быть лучше медленного в соседний город). Очевидно, что скорость и пути прохождения разных пакетов могут быть различными.

Таким образом, протокол IP осуществляет перемещение данных в сети, а протокол TCP обеспечивает надежную доставку данных, используя систему кодов, исправляющих ошибки. Причем два сетевых сервера могут одновременно передавать в обе стороны по одной линии множество TCP-пакетов от различных клиентов.

Некоторые начинающие пользователи думают, что связь по Интернету похожа на телефонную. Хочется еще раз подчеркнуть основное различие передачи информации по телефонной сети и по Интернету: когда вы звоните по телефону кому-нибудь в другой регион страны или даже на другой континент, телефонная система устанавливает канал между вашим телефоном и тем, на который вы звоните. Канал может состоять из десятков участков: медные провода, волоконно-оптические линии, беспроводные участки, спутниковая связь и т.д. Эти участки неизменны на протяжении всего сеанса связи. Это означает, что линия между вами и тем, кому вы звоните, постоянна в течение всего разговора, поэтому повреждения на любом участке данной линии, например обрыв проводов в бурю, способны прервать ваш разговор.

При этом, если соединение нормальное, значит выделенная вам часть сети для других уже не доступна. Речь идет о сети с коммутацией каналов. Интернет же является сетью с коммутацией пакетов, а это совсем другая история. Процесс пересылки электронной почты принципиально иной.

Как уже было отмечено, Интернет-данные в любой форме (будь то электронное послание, Web-страница или скачиваемый файл) путешествуют в виде группы пакетов. Каждый пакет посылается на место назначения по оптимальному из доступных путей. Поэтому даже если какой-то участок Сети окажется нарушенным, то это не повлияет на доставку пакета, который будет направлен по альтернативному пути. Таким образом, во время доставки данных нет необходимости в фиксированной линии связи между двумя пользователями. Принцип пакетной коммутации обеспечивает основное преимущество Интернета - надежность. Сеть может распределять нагрузку по различным участкам за тысячные доли секунды. Если какой-то участок оборудования сети поврежден, пакет может обойти это место и пройти по другому пути, обеспечив доставку всего послания .

Адресация в Интернете

ы уже упоминали IP-адрес, теперь расскажем о нем подробнее. Каждому компьютеру, подключенному к Интернету, присваивается идентификационный номер, который называется IP-адресом.

Но если вы осуществляете сеансовое подключение (то есть подключаетесь на время сеанса выхода в Интернет), то IP-адрес вам выделяется только на время этого сеанса. Присвоение адреса на время сеанса связи называется динамическим распределением IP-адресов. Оно удобно для ISP-провайдера, поскольку в тот период времени, пока вы не выходите в Интернет, IP-адрес, который вы получали, может быть выделен другому пользователю. Этот IP-адрес является уникальным только на время вашей сессии - в следующий раз, когда вы будете выходить в Интернет через своего провайдера, IP-адрес может быть другим. Таким образом, Интернет-провайдер должен иметь по одному IP-адресу на каждый обслуживаемый им модем, а не на каждого клиента, которых может быть намного больше.

IP-адрес имеет формат xxx.xxx.xxx.xxx, где xxx - числа от 0 до 255. Рассмотрим типичный IP-адрес: 193. 27.61.137.

Для облегчения запоминания IP-адрес обычно выражают рядом чисел в десятичной системе счисления, разделенных точками. Но компьютеры хранят его в бинарной форме. Например, тот же IP-адрес в двоичном коде будет выглядеть так:

11000001.00011011.00111101.10001001.

Четыре числа в IP-адресе называются октетами, поскольку в каждом из них при двоичном представлении имеется восемь разрядов: 4×8=32. Так как каждая из восьми позиций может иметь два различных состояния: 1 или 0, общий объем возможных комбинаций составляет 28, или 256, то есть каждый октет может принимать значения от 0 до 255. Комбинация четырех октетов дает 232 значений, то есть примерно 4,3 млрд. комбинаций, за исключением некоторых зарезервированных адресов.

Октеты служат не только для того, чтобы разделять числа, но и выполняют другие функции. Октеты можно распределить на две секции: Net и Host. Net-секция используется для того, чтобы определить сеть, к которой принадлежит компьютер. Host, который иногда называют узлом, определяет конкретный компьютер в сети.

Эта система аналогична системе, используемой в обычной почте, когда одна часть адреса определяет улицу, а вторая - конкретный дом на этой улице.

На ранней стадии своего развития Интернет состоял из небольшого количества компьютеров, объединенных модемами и телефонными линиями. Тогда пользователи могли установить соединение с компьютером, набрав цифровой адрес, например 163. 25.51.132. Это было удобно, пока сеть состояла из нескольких компьютеров. По мере увеличения их количества, учитывая тот факт, что текстовое имя всегда удобнее для запоминания, чем цифровое, постепенно цифровые имена стали заменять на текстовые.

Возникла проблема автоматизации данного процесса, и в 1983 году в Висконсинском университете США (University of Wisconsin) была создана так называемая DNS (Domain Name System)-система, которая автоматически устанавливала соответствие между текстовыми именами и IP-адресами. Вместо чисел была предложена ставшая сегодня для нас привычной запись типа http://www.myhobby.narod.ru/ .

Подобным образом осуществляется сортировка обычной почты. Люди привыкли ориентироваться по географическим адресам, например: «Москва, ул. Рылеева, д. 3, кв. 10», в то время как автомат на почте быстро сортирует почту по индексу.

Таким образом, при пересылке информации компьютеры используют цифровые адреса, люди - буквенные, а DNS-сервер служит своеобразным переводчиком.

Прежде чем переходить к описанию работы DNS-серверов, следует сказать несколько слов о структуре доменных имен.

Доменные имена

огда вы обращаетесь на Web или посылаете e-mail, вы используете доменное имя. Например, адрес http://www.microsoft.com/ содержит доменное имя microsoft.com. Аналогично e-mail-адрес [email protected] содержит доменное имя aha.ru.

В доменной системе имен реализуется принцип назначения имен с определением ответственности за их подмножество соответствующих сетевых групп.

И если каждая группа придерживается этого простого правила и всегда получает подтверждение, что имена, которые она присваивает, единственны среди множества ее непосредственных подчиненных, то никакие две системы, где бы те ни находились в сети Интернет, не смогут получить одинаковые имена.

Так же уникальны адреса, указываемые на конвертах при доставке писем обычной почтой. Таким образом, адрес на основе географических и административных названий однозначно определяет точку назначения.

Домены тоже имеют аналогичную иерархию. В именах домены отделяются друг от друга точками: companya.msk.ru, companyb.spb.ru. В имени может быть различное количество доменов, но обычно их не больше пяти. По мере движения по доменам в имени слева направо, количество имен, входящих в соответствующую группу, возрастает.

Каждый раз, когда вы используете доменное имя, вы также используете DNS-серверы для того, чтобы перевести буквенное доменное имя в IP-адрес на машинном языке.

В качестве примера давайте рассмотрим адрес http://www.pc.dpt1.company.msk.ru/ .

Первым в имени стоит название рабочей машины - реального компьютера с IP-адресом. Это имя создано и поддерживается группой dpt1. Группа входит в более крупное подразделение company, далее следует домен msk - он определяет имена московской части сети, а ru - российской.

Каждая страна имеет свой домен. Так au - соответствует Австралии, be - Бельгии и т.д. Это географические домены верхнего уровня.

Помимо географического признака используется тематический, в соответствии с которым существуют следующие доменные имена первого уровня:

  • com - обозначает коммерческие предприятия;
  • (edu) - образовательные;
  • Как работает DNS-сервер

    NS-сервер принимает запрос на конвертацию доменного имени в IP-адрес. При этом DNS-сервер выполняет следующие действия:

    • отвечает на запрос, выдав IP-адрес, поскольку уже знает IP-адрес запрашиваемого домена.
    • контактирует с другим DNS-сервером для того, чтобы найти IP-адрес запрошенного имени. Этот запрос может проходить по цепочке несколько раз.
    • выдает сообщение: «Я не знаю IP address домена, запрашиваемого вами, но вот IP address DNS-сервера, который знает больше меня»;
    • сообщает, что такой домен не существует.

    Представим, что вы набрали адрес http://www.pc.dpt1.company.com/ в вашем браузере, который имеет адрес в домене верхнего уровня COM (рис. 9). В простейшем варианте ваш браузер контактирует с DNS-сервером для того, чтобы получить IP-адрес искомого компьютера, и DNS-сервер возвращает искомый IP-адрес (рис. 10).

    На практике в Сети, где объединены миллионы компьютеров, найти DNS-сервер, который знает нужную вам информацию, - это целая проблема. Иными словами, если вы ищете какой-то компьютер в Сети, то прежде всего вам необходимо найти DNS-сервер, на котором хранится нужная вам информация. При этом в поиске информации может быть задействована целая цепочка серверов. Пояснить работу DNS-серверов можно на примере, показанном на рис. 11 .

    Предположим, что тот DNS-сервер, к которому вы обратились (на рис. 11 он обозначен как DNS1), не имеет нужной информации. DNS1 начнет поиск IP-адреса с обращения к одному из корневых DNS-серверов. Корневые DNS-серверы знают IP-адреса всех DNS-серверов, отвечающих за доменные имена верхнего уровня (COM, EDU, GOV, INT, MIL, NET, ORG и т.д.).

    Например, ваш сервер DNS1 может запросить адрес у корневого DNS-сервера. Если корневой сервер не знает данного адреса, возможно, он даст ответ: «Я не знаю IP-адреса для http://www.pc.dpt1.company.com/ , но могу предоставить IP-адрес COM DNS-сервера».

    После этого ваш DNS посылает запрос на COM DNS с просьбой сообщить искомый IP-адрес. Так происходит до тех пор, пока не найдется DNS-сервер, который выдаст нужную информацию.

    Одна из причин, по которой система работает надежно, - это ее избыточность. Существует множество DNS-серверов на каждом уровне, и поэтому, если один из них не может дать ответ, наверняка существует другой, на котором есть необходимая вам информация. Другая технология, которая делает поиск более быстрым, - это система кэширования. Как только DNS-сервер выполняет запрос, он кэширует полученный IP-адрес. Однажды сделав запрос на корневой DNS (root DNS) и получив адрес DNS-сервера, обслуживающего COM-домены, в следующий раз он уже не должен будет повторно обращаться с подобным запросом. Подобное кэширование происходит с каждым запросом, что постепенно оптимизирует скорость работы системы. Несмотря на то что пользователям работа DNS-сервера не видна, эти серверы каждый день выполняют миллиарды запросов, обеспечивая работу миллионов пользователей.

    КомпьютерПресс 5"2002

Давайте, в общих чертах, разберемся, как работает сеть Интернет.

Все компьютеры в сети Интернет грубо можно поделить на две группы – серверы и клиенты.

Серверы - это мощные, надежные компьютеры, работающие круглосуточно. Они постоянно подключены Интернету, способны хранить и пересылать информацию по запросу других компьютеров, отвечая при этом на десятки и сотни запросов одновременно.

Клиенты - это те персональные компьютеры пользователей Интернета, на которых можно составлять и посылать запросы к серверам, получать и отображать информацию. Часто такой компьютер не соединен с Интернетом постоянно, а подключается по мере необходимости.

Для подключения к Интернету мы обращаемся к услугам специальных организаций - провайдеров услуг Интернета.

Интернет-провайдер – это организация, предоставляющая доступ к сети Интернет через свой Интернет-сервер. Компьютеры пользователей (клиенты) соединяются с сервером провайдера по телефонным линиям, выделенному каналу или беспроводной сети. В свою очередь, серверы провайдера соединены с Интернетом постоянными высокоскоростными линиями связи.

На компьютерах пользователей Интернет стоит соответствующее программное обеспечение, например браузер, которое, составляет и посылает запрос серверу, затем получает и отображает информацию на экране монитора. На сервере, В свою очередь, установлено свое программное обеспечение, которое хранит информацию и отвечает на запросы программного обеспечения клиента.

А теперь представьте, что различные пользователи имеют разные типы компьютеров, в которых установлены различные операционные системы (Windows, Vista и пр.), разные браузеры (Opera, Internet Explorer, Mozilla Firefox). На различных серверах, также установлены различные типы компьютеров и различное серверное программное обеспечение. Для того, чтобы программы, написанные разными авторами для разного типа компьютеров, с разными операционными системами, могли корректно взаимодействовать между собой, были придуманы специальные правила – Протоколы . Можно сказать, что протоколы помогают компьютерам обмениваться информацией.

Для каждой службы Интернета существует свой прикладной протокол. Например, если вы хотите отправить электронную почту, то на вашем компьютере должна быть установлена необходимая для этого программа, а на сервере имеется своя программа, соответствующая вашей программе и свой протокол прикладного уровня , обеспечивающий взаимодействие программы-клиента с сервером.

Таким образом, для использования какой-либо из служб Интернета нам нужны:

  • Компьютер
  • Программа-клиент, установленная на нашем компьютере, и способная работать по протоколу избранной службы
  • Адрес сервера, на котором установлена программа-сервер.

Для облегчения понимания, изложенной выше информации, предположим, что русский Иван решил пообщаться с американцем Билом. Для этого Ивану необходимо знать английский язык. И не просто знать английские слова, но и уметь расставить их в нужном порядке, в соответствии с правилами (протоколами), только тогда Бил сможет понять Ваню.

Осталось, только выяснить, а как же Ваня найдет Била, чтобы пообщаться с ним? Элементарно – Ваня знает номер сотового телефона Била.

По такому же принципу находят друг друга миллионы компьютеров в Интернете. Каждый компьютер, подключенный к сети Интернет, имеет свой уникальный IP – адрес (Internet Protocol Address), который представляет собой последовательность четырех чисел, разделенных точками, например 195.5.46.34. Каждое число может лежать в диапазоне от 0 до 255. IP-адрес для компьютера, как для нас номер сотового телефона. По нему можно найти компьютер в любом уголке мира.

Далее возникает следующий вопрос – если все веб-сайты, веб-страницы, блоги и пр. являются частью всемирной базы данных WWW, то где и на каких полках все это лежит? И как до всего этого добирается наш компьютер?

Как правило, сайты размещаются на Интернет-серверах, потому что именно на серверах имеется обширное дисковое пространство, необходимое программное обеспечение и при этом, возможность отвечать на десятки и сотни запросов одновременно. Для того, чтобы разместить сайт в Интернете, а точнее во всемирной паутине WWW, необходимо обратиться к хост-провайдеру.

Хост-провайдер – это организация, которая предоставляет услуги хостинга, т.е. предоставляет дисковое пространство на Интернет-сервере (Хостинге), для размещения вашего сайта в сети Интернет. Запомните, что хостинг это не процесс публикации сайта, а только аренда дискового пространства.

С английского «хост» переводится, как главный компьютер или хозяин постоялого двора. Так вот, на этот постоялый двор и сваливают сайты. Таких постоялых дворов в сети тысячи.

Итак, чтобы найти какой-либо сайт во всемирной паутине, надо знать IP-адрес, того сервера, где размещен сайт. Если для компьютера, запомнить несколько десятков IP-адресов в виде набора цифр, не составит труда, то человеку это сделать гораздо сложнее.

Для облегчения работы была придумана Система доменных имен (DNS – Domain Name System). Эта альтернативная система адресации, более понятна человеку, т.к. компьютерам присваивается не только IP-адрес, но и символьное имя или доменное имя . Доменное имя состоит из цепочки символов, разделенных между собой точкой.

Как бы, не были удобны для пользователя доменные имена, но работа всех компьютеров построена на цифровых адресах, поэтому для обеспечения связи между человеком и машиной была создана служба DNS -серверов .

DNS-сервер - программа, осуществляющая преобразование доменного адреса в цифровой IP-адрес и наоборот. Каждый раз, когда вы набираете доменное имя в браузере, служба DNS вычисляет, какому IP-адресу соответствует это имя и какой именно ресурс нужно вам предоставить.

Пожалуй, DNS-сервер можно сравнить с адресной книгой в нашем сотовом телефоне. Мы физически не можем запомнить все номера, нужных нам сотовых телефонов, поэтому каждый номер записываем в телефонной книге под уникальным именем. Чтобы позвонить, находим нужное нам имя, а телефон сам разбирается, какой номер набирать, так же как DNS-сервер.

Если с адресами серверов, более или менее все понятно, то, как же находятся и передаются необходимые нам документы на сайтах?

Всемирная паутина WWW населена миллионами различных документов, которые лежат на различных серверах и наша задача найти и прочесть нужный нам документ. Но для этого наш браузер должен знать точное местонахождение необходимого документа .

Всем пользователям компьютеров, даже чайникам, хорошо знакомо понятие полного имени файла, которое включает в себя краткое имя файла с расширением и полный путь к файлу, начиная с имени устройства или диска, затем идет перечень вложенных папок, разделенных между собой слешем «\». Таким образом, мы однозначно идентифицируем файл в пределах одного компьютера.

Каждый файл в Интернете также имеет свой уникальный адрес. Он называется URL .

URL (Uniform Resource Locator ) – универсальный локатор ресурса, или адрес любого файла в Интернете. Кроме адреса компьютера в URL содержится указание о протоколе, по которому нужно обращаться к файлу, какую программу на сервере запустить и к какому конкретному файлу следует обратиться.

Типичный адрес URL состоит из трех основных элементов: Протокол + Доменное имя + Путь/Файл .

Давайте разберем более подробно следующий URL http://nic.ru/dns/service/dns-service.html . Этот адрес принадлежит одной из страниц сайта RU-Center.

  1. http – это протокол, он определяет совокупность правил, по которым происходит взаимодействие между клиентом и сервером. Протокол, принятый в WWW для передачи гипертекста, называется HyperText Transfer Protocol , сокращенно - HTTP .
  2. Далее идет доменное имя сервера, к которому вы обращаетесь за информацией, в нашем случае это nic . ru . Где . ru – домен верхнего уровня, nic . ru – домен второго уровня. Между доменом и протоколом ставится разделитель :// .
  3. /dns/service/dns-service.html – путь до нужного нам файла dns-service.html, который находится в папке service ,которая в свою очередь вложена в папку dns .

Вот и все. В «трех словах» я попыталась вам объяснить, как работает Сеть Интернет, и ее самый популярный ресурс – всемирная путина WWW.

Самой знаменитой глобальной сетью является Интернет, представляющий собой набор взаимосвязанных сетей, функционирующих как одна сеть. Основным каналом связи Интернета является последовательность сетей, организованных правительством США для взаимосвязи суперкомпьютеров ключевых научно-исследовательских лабораторий. Этот канал называется опорной сетью (backbone) и поддерживается Национальным научным фондом США (National Science Foundation).

Со времен организации первоначальной опорной сети, доступ к которой имели лишь ограниченное количество специальных пользователей, Интернет разросся в сеть, охватывающую весь мир и предоставляющую доступ миллионам простых пользователей.
Для передачи по Интернету информация разбивается протоколом TCP/IP на пакеты необходимого размера. На пути к пункту назначения пакеты проходят через различные сети разных уровней. В зависимости от применяемой схемы маршрутизации отдельные пакеты могут передаваться в Интернете по разным маршрутам, а потом собираться в первоначальную последовательность по прибытию в пункт назначения.

В процессе перемещения пакета от источника к назначению он может пройти через несколько локальных сетей, региональных сетей, маршрутизаторов, повторителей, хабов, мостов и шлюзов. Региональные сети (midlevel network) - это просто сети, которые могут обмениваться информацией между собой без подключения к Интернету.

Повторитель (repeater) предотвращает затухание сигналов, усиливая и передавая дальше полученную информацию. Хабы соединяют компьютеры в сетевой сегмент, позволяя им взаимодействовать друг с другом. Мосты соединяют различные сети, позволяя выполнять межсетевую трансляцию данных. Специальный тип моста, называющийся шлюзом, преобразует сообщения для обмена между сетями разных типов (например, между сетям Windows и сетями Apple).

Поставщики интернет-услуг.

Доступ к Интернету отдельным пользователям и сетям предоставляется компаниями - поставщиками интернет-услуг (ISP, Internet Service Provide). Эти компании владеют блоками адресов Интернета, которые они могут назначать своим клиентам. Когда пользователь подключается к поставщику интернет-услуг, он подключается к его серверу, который в свою очередь подключен к Интернету посредством устройств, называющихся маршрутизаторами. Маршрутизатор представляет собой устройство, которое получает сетевые пакеты от узлов сети и определяет их адрес назначения в Интернете и самый лучший маршрут для доставки пакета по этому адресу. Маршрутизация осуществляется на основе известных каналов в Интернете и объема трафика на разных сегментах. После этого маршрутизатор передает пакет в точку доступа к сети (Network Access Point, NAP).

Сервисы, предоставляемые поставщиком интернет-услуг своим клиентам, включают в себя:

Средство интернет-идентификации в виде IP-адреса;

Услуги электронной почты через серверы POP3 и SMTP;

Службы новостей через серверы Usenet;

Маршрутизацию через серверы DNS.

IP-адрес.

Поставщики интернет-услуг предоставляют своим клиентам адреса для доступа в Интернет, которые называются адресами протокола IP или IP-адресами. IP-адрес однозначно идентифицирует пользователя в Интернете, позволяя ему получать различного рода информацию. Сейчас используются две версии адресации в Интернете: протокол IPv4 и протокол IPv6.

До 2000 года преобладающей версией является версия IPv4. В этой версии протокола IP каждому узлу сети выделяется числовой адрес в виде XXX.YYY.ZZZ.AAA, где каждая группа букв представляет трехзначное число в десятичном формате (или 8-битовое в двоичном). Этот формат называется десятичным представлением с разделительными точками (dotted decimal notation), а сама группа - октетом. Десятичные числа каждого октета получаются из двоичных чисел, с которыми работает аппаратное обеспечение. Например, сетевому адресу 10000111. 10001011. 01001001. 00110110 в двоичном формате соответствует адрес 135. 139. 073. 054 в десятичном формате.

IP-адрес состоит из адреса сети и адреса узла. Адрес сети идентифицирует всю сеть, а адрес узла - отдельный узел в этой сети: маршрутизатор, сервер или рабочую станцию. Локальные сети разбиваются на 3 класса: A, B, C. Принадлежность сети к определенному классу определяется сетевой частью IP-адреса.

Адреса сетей А зарезервированы для крупных сетей. Для сетевой части адреса применяются первые 8 битов (слева), а для адреса узла - последние 24 бита IP-адреса. Первый (старший) бит первого октета сетевого адреса равен 0, а за ним следует любая комбинация остальных 7 битов. Соответственно, IP-адреса класса А занимают диапазон 001.х.х.х - 126.х.х.х, что позволяет адресацию 126 отдельных сетей, в каждой из которых будет около 17 млн. узлов.

Диапазон адресов 1 27.х.х.х зарезервирован для тестирования сетевых систем. Некоторые из этих адресов принадлежат правительству США для тестирования опорной сети Интернета. Адрес 127.0.0.1 зарезервирован для тестирования шины локальной системы.

Адреса класса В назначаются сетям среднего размера. Значение первых двух октетов лежит в числовом диапазоне 128.x.x.x - 191.254.0.0. Это позволяет адресовать до 16384 разных сетей, каждая из них может иметь 65 534 узлов.

Адреса класса С применяются для сетей, где количество узлов сравнительно невелико. Сетевая часть адреса указывается первыми тремя октетами, а адрес сети - последним. Значение первых трех октетов, определяющих сетевой адрес, может быть в диапазоне 192.x.x.x - 223.254.254.0. Таким образом, адреса класса С позволяют адресацию приблизительно 2 млн. сетей, каждая из них может иметь до 254 узлов.

Версия IPv6 протокола IP была разработана с целью решения ожидаемой проблемы нехватки адресов, поддерживаемых версией IPv4. Адреса назначения и источника в IPv6 имеют длину 128 бит или 16 байт, что позволяет поддерживать громадное количество IP-адресов. Протокол IPv6 также предусматривает проверку подлинности отправителя пакета, а также шифрование содержимого пакета. Поддержка протокола IPv6 встроена в Windows 7 и во многие дистрибутивы Linux; и в последние годы этот протокол применяется все чаще. Протокол IPv6 обеспечивает поддержку мобильных телефонов, бортовых компьютеров автомобилей и широкий круг других подключенных к Интернету персональных устройств.

Адреса IPv6 записываются в виде восьми групп четырехзначных шестнадцатеричных чисел, разделенных двоеточием: 2001: 0db8: 00a7: 0051: 4dc1: 635b: 0000: 2ffe. Нулевые группы могут представляться двойным двоеточием. Но адрес не может содержать больше двух последовательных двоеточий. Для удобства ведущие нули могут опускаться. При использовании в качестве URL-адреса IPv6-адрес необходимо заключать в квадратные скобки - http://.

Подсети.

Узлы секций сети можно сгруппировать в подсети с общим диапазоном IP-адресов. Эти группы называются интрасетями. Каждый сегмент интрасети должен быть оснащен защитным шлюзом, играющим роль точки входа и выхода сегмента. Обычно роль шлюза играет устройство, называющееся маршрутизатором. Маршрутизатор - это интеллектуальное устройство, которое пересылает полученные данные на IP-адрес получателя.

В некоторых сетях в качестве внешнего шлюза применяется сетевой экран или, по-другому, брандмауэр (firewall). Обычный брандмауэр представляет собой комбинацию аппаратных и программных компонентов, создающих защитный барьер между сетями с разными уровнями безопасности. Администратор может настроить брандмауэр так, что он будет пропускать данные только на указанные IP-адреса и порты.

Для создания подсети маскируется сетевая часть IP-адреса узлов, которые нужно включить в данную подсеть. В связи с этим, мобильность данных ограничивается узлами подсети, так как эти узлы могут распознавать адреса только в пределах замаскированного диапазона. Для создания подсети существуют три основные причины.

  • Чтобы изолировать разные сегменты сети друг от друга. Возьмем, например, сеть из 1 000 компьютеров. Без применения сегментации данные каждого из этих 1 000 компьютеров будут проходить через все остальные компьютеры. Представьте себе нагрузку на канал связи. Кроме этого, каждый пользователь сети будут иметь доступ к данным всех других ее членов.
  • Чтобы эффективно использовать IP-адреса. Применение 32-битового представления IP-адреса допускает ограниченное количество адресов. Хотя 126 сетей, каждая с 17 млн. узлов, может казаться большим числом, в мировом сетевом масштабе этого количества адресов далеко не достаточно.
  • Чтобы позволить повторное использование одного IP-адреса сети. Например, разделение адресов класса С между двумя расположенными в разных местах подсетями позволяет выделить каждой подсети половину имеющихся адресов. Таким образом, обе подсети могут использовать один адрес сети класса С.

Чтобы создать подсеть, нужно заблокировать числами какие-либо или все биты октета IP-адреса. Например, маска со значением 255 блокирует весь октет, а маска со значением 254 блокирует всё, кроме одного адреса октета. Для сетей класса А обычно применяется маска 255. 0. 0. 0, для сетей класса В - маска 255 .255.0 .0, а для сетей класса С - маска 255. 255. 255. 0. Чтобы узнать адрес сети, нужно выполнить побитовую операцию логического «И» с IP-адресом и маской. В Windows 2000/XP значение по умолчанию маски сети вводится автоматически при вводе IP-адреса.


Вконтакте

На сегодняшний день интернет стал одной из важнейших слагаемых жизни человека. Естественно, он не настолько важен, как вода или продукты питания, однако его отсутствие приведет к информационному коллапсу по всей планете и фактически откинет человечество на столетие назад. Давай разберем, что такое интернет и почему он так важен в нашей жизни.

Интернет – объединение всех малых сетей в единую глобальную сеть посредством специальных кабелей. Объяснение терминологии вполне понятное, но мало чего объясняет рядовому пользователю, ввиду чего следует привести развернутый пример.

Представьте следующее:

  • Изначально существовал остров или континент, где полностью отсутствовали всяческие сети, но уже существовали вычислительные машины.
  • В каждом компьютере было множество файлов, как мультимедиа, так и важной информации.
  • Чтобы передать файл другому пользователю нужно было взять носитель цифровой информации (диск или дискету), записать данные и лично отнести их тому, кому они требовались.

Это было возможно только на территории города или, как максимум, страны. Такой способ крайне неудобен и непрактичен.

По истечение некоторого времени люди стали объединять ближайшие по расстоянию компьютеры специальными кабелями – то есть создавали локальные сети . Это еще не могло назваться Интернетом, но стало началом глобальной сети. Внутри локального соединения можно передать любую информацию. Со временем объединялось все больше и больше компьютеров до тех пор, пока все вычислительные машины в пределах одного острова, страны или континента не создали одну большую сеть.

Эту сеть уже можно назвать интернетом, но всемирная паутина – нечто более глобальное. Принцип ее построения аналогичен локальной сети, только компьютеры на разных континентах соединяются толстенными кабелями , которые прокладываются по дну морей или океанов. Если основные соединяющие кабеля будут каким-либо образом разрушены, то сети опять превратятся в масштабные, но локализованные. Как работает интернет через эти провода: все передающиеся файлы делятся на пакеты и отправляются получателю на скорости, которую допускает тарифный план вашего провайдера.

Изобретателем Интернета является не один человек, а целая группа военных из Америки. Причиной послужила Холодная война с СССР и сети должны были каким-то образом противодействовать угрозе. Проект был разработан в конце октября 1969 года, но широкое распространение интернет обрел только в 1991 году.

Суть работы интернет-провайдеров

Несмотря на частое взаимодействие с такими корпорациями, как Ростелеком, Билайн, МТС и прочими, многие люди до сих пор не знают кто такой интернет-провайдер. Под этим термином скрывается не кто иной, как поставщик услуг телекоммуникаций, в том числе и интернета.

Internet Service Provider – провайдер услуг Интернет, то есть компания, которая предлагает клиентам подключиться к виртуальной сети за определенную плату. Сама фирма всегда имеет доступ к глобальному облаку, что обещает и своим пользователям.

Чтобы клиент поставщика услуг мог беспрепятственно пользоваться интернетом у себя дома, он должен быть подключен к одному из серверов провайдера. Сервера также связываются с домами и частными компьютерами посредством длинных прочных кабелей. Однако провайдеров намного меньше, чем людей, желающих иметь доступ к глобальной сети, что значительно влияет на скорость соединения. Сам сервер имеет достаточно большую пропускную способность, но при делении ее на всех клиентов, каждому из них достается лишь малая часть.

Для более точного определения кому и сколько из этой части отводить провайдеры придумали понятие «тарифный план ». Его максимальная польза легко вычисляется по максимальной скорости доступа, а также наличию ограничений по скачиваемому трафику. Наиболее прогрессивные тарифы предлагают скорость от 100 до 1000 Мбит/сек, однако и стоят они гораздо дороже, чем рядовые по 30-80 Мбит/сек.

Для идентификации пользователя в общей сети интернета используется специальный адрес – IP . Для того, чтобы вас правильно идентифицировал провайдер, он присваивает при подключении логин и пароль . С помощью этих данных также можно попасть во внутренний личный кабинет на сайте поставщика услуг и управлять услугами. Мы с вами разобрались кто такие провайдеры интернета и в чем заключает суть их существования, а также какую пользу может извлечь каждый от сотрудничества с данными компаниями. Но откуда у самих поставщиков берется доступ к виртуальной мировой сети и как они передают сигнал на локальные компьютеры?

Как работают провайдеры интернета?

Мы уже знаем, что все компьютеры мира соединены между собой, так почему бы не пользоваться услугами сети напрямую? Процесс передачи данных не так легок, как кажется при первом прочтении формулировки слова «интернет». Сеть содержит очень много информации и ее нужно где-то хранить. Если небольшие вебсайты могут быть размещены на локальных вычислительных машинах, то такие, как Википедия, Google, AliExpress и прочие крупномасштабные хранятся на супермощных ПК с огромным количеством жестких дисков. Архитектура доступа следующая:

  • От серверов проводятся выделенные высокоскоростные магистрали.
  • К магистралям подключаются шлюзы интернет-провайдеров.
  • От поставщика сетей ведутся шлюзы к локальным сетям или частным ПК.

Данная схема крайне упрощена, но вполне доступна для понимания каждому. Далее стоит объяснить каким именно образом ПК пользователя взаимодействует с интернетом.

  • После подключения к компании-поставщику в вашу квартиру заводится коаксиальный или оптоволоконный кабель, который подключается к роутеру или напрямую к ПК. Таким образом вы имеете соединение с сервером провайдера.
  • Для последующей работы вам необходимо установить специальный веб-обозреватель и браузер. Наиболее популярными н сегодняшний день являются: Google, Yandex, Firefox. С помощью этих программ вам будет доступен просмотр видео, общение, чтение книг, обзор новостей и прочее.
  • При введении конкретного запроса пользователя в поисковую строку браузера программа отправляет сигнал на сервер провайдера. Последний, в свою очередь, передает его на все доступные мировые сервера для поиска выдачи самой релевантной информации клиенту.
  • После подбора данных сигнал возвращается к серверу провайдера и вновь передается клиенту, но теперь в браузере отображается не пустое поле, а все необходимые для вас данные.

Случается и так, что пользователь не может получить ответ на конкретный запрос. Это происходит по нескольким причинам: недоступен сервер, на котором хранится информация, недоступен конкретный файл с данными или запрашиваемый контент заблокирован в вашем регионе Роскомнадзором. В любом случае вы получите соответствующее уведомление.

Где хранится интернет и как мы получаем доступ к сайтам?

Всемирная сеть - сборник всех знаний многих поколений. Никто не может посчитать сколько весит эта информация, ведь каждую секунду создаются новые сайты и удаляются недействительные, но где хранится интернет, если он настолько велик? Возможно ли создание суперкомпьютера, который вместит такую огромную базу данных?

Ответ на вопрос весьма прост: так как интернет является совокупностью всех ПК в мире, то и хранится он на них же, но в малых частях. Если разработчик создает личный сайт, то код остается на его вычислительной машине, а пользователи сети могут просматривать его по ссылке общего доступа. Также происходит с фотографиями или иными мультимедиа файлами. Но есть и такие базы данных, которые невозможно оставить в ПК: огромные веб-ресурсы, социальные сети, интернет-магазины и прочие порталы размещаются на огромных серверах. Совсем же крупные базы данных хранятся в дата-центрах, которые условно и можно назвать «облаками» данных.

Кстати: первым интернетом была сеть Arpanet, а первое сообщение, которое удалось передать с ее помощью, было обычное для нас слово «login». Оно отправлялось студентом Чарли Клайном, но в ходе передачи произошел сбой и до конечного пользователя дошли только первые две буквы – «lo».

Давайте вернемся к вопросу где хранятся файлы интернета и рассмотрим наиболее популярные дата-центры всего мира.

  • Digital Beijing. Расположен в Пекине и был возведен в честь Олимпиады 2008 года. Отличительная особенность центра – использование только светодиодных ламп, что дает возможность сократить использование электроэнергии на 60%. Стены огромного здания выполнены из стекла, они нужны для защиты внутреннего помещения от солнечного тепла, что дополнительно сокращает расходы на охлаждение серверов.
  • Apple. Располагается в Северной Каролине, США. Компания славится тем, что год за годом сокращает потребление обычной электроэнергии. По утверждению ее директоров практически все производство и офисы работают от энергии, вырабатываемой солнечными батареями. И неудивительно – центр окружен 400 тысячами кв.м этих возобновляемых источников света и тепла.
  • SityGroup. Расположен в Германии и считается самым экологически чистым, а также зеленым дата-центром. Сервера и их использование не наносят никакого вреда окружающей среде, что уже было отмечено всеми защитными организациями.
  • Telehouse West. Расположен в Лондоне, отличается использованием дата- центров для сдачи в аренду крупным компаниям. Рядом со зданием технически невозможно размещение солнечных батарей или мельниц, поэтому с 2011 года фирма начала закупать энергию этих источников у других производителей.
  • Telefonica. Испанский центр занимает восемь футбольных полей и обеспечивает хранение данных местных пользователей, а также клиентов из Германии и Англии. Часть ресурсов сдается в аренду желающим компаниям. Центр – третий в мире по размерам, награжден как наиболее надежный.
  • EBay. США. Основная особенность – расположение в Аризонской пустыне, где температура значительно выше, чем положено для функционирования дата-центра. Внутри здания температур достигает +46 градусов, для охлаждения используются водные контуры, все сервера помещены в контейнеры, перенаправляющие энергию не на понижение температуры, а на эффективность работы.
  • Google. Расположены по всему свету, большая часть центров соответствует «зеленым стандартам». Те, что расположены на берегах морей, например дата-центр в Финляндии, используют для охлаждения серверов только ледяную или холодную воду, что сокращает затраты.
  • Verne Global. Исландия. Дата-центр используется концерном BMW. Ранее он находился в Германии, но после переноса серверов на территорию более северной страны, был замечен 100% спад выброса углеродов, что важно для окружающей среды. Для выработки энергии здесь используются мощные гейзеры, поэтому урон природе минимальный.
  • IBM. Создан в 2009 году в США экспериментальным путем. Компания согласилась выделить деньги на строительство только в том случае, если будет изобретен метод, позволяющий в два раза снизить затраты на электроэнергию. В итоге дата-центр получает энергию от газовых турбин, чья эффективность на 60% выше, чем у рядовых.
  • Hewlett-Packard. Северная Великобритания. Не относится к экологически чистым предприятиям, но явно к этому стремится. Расходы на кондиционирование сокращаются благодаря наличию северных ветров: два вентилятора могут поддерживать оптимальную для серверов температуру без всякого электричества практически полгода. Расположенное рядом море дает возможность установки ветрогенераторов, которые также будут вырабатывать энергию.

Это только 10 основных дата-центров, но по миру их разбросано очень много и они будут продолжать строиться по мере роста количества информации в сети. Площадь помещений и суммы затрат на их строительство практически невообразимы, а сколько данных на них хранится – страшно представить.

Как доменное имя помогает найти нужный сайт?

В интернете миллиарды страниц и сайтов, их гораздо больше, чем людей на планете. Если для людей существует перепись, где часто встречаются тезки, однофамильцы или вообще граждане с идентичными ФИО, то в сети это недопустимо. Что такое доменное имя: это набор символов на кириллице или латинице разделенный точками на две или три части.

Стоит привести пример для полного понимания вопроса: полное название сайта mysite.com – это и есть полное доменное имя. Оно разделено двумя точками, следовательно, состоит из трех разных доменов:

  • Домен второго уровня – «mysite». Он задает само название сайта. Чем оно короче, тем лучше, но следует отражать основную идею или тематику ресурса.
  • Домен верхнего уровня – «com». Отражает направленность портала, например COM – значит коммерческий, следовательно на этом сайте что-то продается, он создан для сбора денег и так далее, RU – национальная российская доменная зона. Их очень много.

В последнее время для регистрации новых сайтов хватает сочетания любых двух из вышеприведённых структур. Не забывайте, что перед созданием сайта необходимо проверить доменное имя – двух одинаковых быть не должно.

Занимаясь поиском нужной для работы информации, развлекаясь, общаясь в социальных сетях, мы даже не задумываемся, что такое интернет, как он устроен и как работает.

Об интернете знают все. Большинство населения умеют им пользоваться на бытовом уровне. Но вот на вопрос о том, что такое интернет, ответить вразумительно может далеко не каждый. Строго говоря, знать это необязательно, но представление об особенностях работы глобальной сети может помочь разобраться в иногда встречающихся трудностях, избежать возможных проблем, буквально стать своим на просторах полноводного океана информации.

Интернет принято сравнивать с огромной библиотекой, в которой можно найти любые сведения – от обычных новостей до мультимедийных ресурсов и сетевых игр. Но то, как именно, по каким принципам работает она, как вообще стал возможен глобальный обмен информацией, мало кто имеет представление.

Если говорить предельно просто, то интернет – это огромное количество компьютеров, связанных между собой и образующих гигантскую глобальную сеть, опутывающую весь земной шар наподобие паутины. Такое сходство породило другой термин – World Wide Web, что в переводе с английского означает «Всемирная паутина». Широко известен сокращенный вариант этого термина – WEB.

Иначе говоря, компьютер, работающий где-нибудь в Восточной Сибири, через сложную и разветвленную систему связей соединяется с любой другой машиной – в Монреале или в крошечном таиландском городке Банг-Понге. То есть каждый компьютер (смартфон, планшет), имеющий подключение к интернету, является частью глобальной сети и может иметь доступ к информации, размещенной на других компьютерах в сети.

Особенности структуры

Подробно описывать техническое устройство WEB сейчас не имеет смысла – это очень сложно и нужно только специалистам. Остановимся лишь на основных принципах работы и главных составляющих структуры.

Общеизвестно, что два компьютера (или более) могут соединяться между собой, образуя локальную (местную) сеть. На предприятиях и в организациях они создаются с целью совместного использования ресурсов. Локальная сеть имеет немало общего с глобальной, но отличается от неё изолированностью, то есть тем, что работает в пределах одной организации. Нередко её называют интранетом. Но ничто не мешает соединить LAN с любыми другими, включая интернет, частью которого становятся не только отдельные устройства, но и целые локальные сети.

Существуют сети более высокого, нежели локальные, уровня – региональные, национальные, континентальные. А те соединяются посредством оптоволоконного трансатлантического кабеля между собой, образуя глобальную.

Стоит отметить, что в мире имеются национальные сети, не подключенные к глобальной, либо имеющие лишь ограниченный доступ к ней. Ярчайший пример – Северная Корея, на территории которой работает местная сеть.

Некоторые не слишком искушенные пользователи полагают, что интернет существует словно сам по себе, что он нематериален, раз его нельзя увидеть и потрогать. На самом деле он состоит из множеств самых разных вполне материальных предметов и явлений.

Вводя в адресную строку любимого браузера поисковый запрос или адрес сайта, пользователь, не задумываясь об этом, инициализирует целую цепочку действий, приводящих к нужной информации. Разберем по порядку все звенья этой цепи.

  • Пользователь. Человек, создающий запрос к сети. Этим действием начинается каждое обращение к интернету. Запрос может быть создан автоматически – для этого существуют специальные программы, называемые ботами.
  • Компьютер и программное обеспечение. Под компьютером мы понимаем любое устройство (десктоп, ноутбук, смартфон, планшет), при помощи которого осуществляется выход в сеть. Без них действия такого рода невозможны. В качестве ПО используют браузер. Именно он передает в сеть запрос и, получая ответ, осуществляет соединение и взаимодействует с пользователем.
  • Провайдер. Организация, предоставляющая доступ в сеть каждому отдельному компьютеру. Имеется в каждом городе.
  • Домен и служба доменных имен (DNS). Домен – это некоторая зона, которую занимает в сети сайт. Служба DNS преобразует переданное браузером доменное имя в IP-адрес, после чего провайдер соединяет компьютер с нужным ресурсом.

IP-адрес присваивается каждому компьютеру в сети. Это необходимо, чтобы оборудование провайдера могло отправить запрос пользователя в нужное место и передать поученный ответ тому устройству, с которого пришел запрос.

Конечное звено в цепи – сервер, на котором размещен нужный ресурс. Именно к нему организуется (через всю рассмотренную цепочку) доступ компьютера пользователя.

Итоги

Интернет – это целый организм, сложный и разветвленный. Просто щелкнуть выключателем и отключить его не получится. Ведь это – все компьютеры в мире, соединенные между собой и образующие огромную сеть. Новый мир, не имеющий границ и называемый киберпространством.

Смотрите видеоролик, поясняющий принципы работы интернета.