Количественные характеристики надежности. Средняя наработка на отказ – это отношение наработки восстанавливаемого объекта к математическому ожиданию числа его отказов в течение этой наработки Критерии надежности невосстанавливаемых объектов

  • 29.11.2023

Интенсивность отказов - условная плотность вероятности возникновения отказа невосстанавливаемого объекта, определяемая для рассматриваемого момента времени при условии, что до этого момента отказ не возник.

Таким образом, статистически интенсивность отказов равна числу отказов, происшедших за единицу времени, отнесенному к числу не отказавших к данному моменту объектов.

Типичное изменение интенсивности отказов во времени показано на рис. 5.

Опыт эксплуатации сложных систем показывает, что изменение интенсивности отказов λ(t ) большинства количества объектов описывается U - образной кривой.

Время можно условно разделить на три характерных участка: 1. Период приработки. 2. Период нормальной эксплуатации. 3. Период старения объекта.

Рис. 5. Типичное изменение интенсивности отказов

Период приработки объекта имеет повышенную интенсивность отказов, вызванную приработочными отказами, обусловленными дефектами производства, монтажа и наладки. Иногда с окончанием этого периода связывают гарантийное обслуживание объекта, когда устранение отказов производится изготовителем. В период нормальной эксплуатации интенсивность отказов практически остаётся постоянной, при этом отказы носят случайный характер и появляются внезапно, прежде всего, из-за случайных изменений нагрузки, несоблюдения условий эксплуатации, неблагоприятных внешних факторов и т.п. Именно этот период соответствует основному времени эксплуатации объекта.

Возрастание интенсивности отказов относится к периоду старения объекта и вызвано увеличением числа отказов из-за износа, старения и других причин, связанных с длительной эксплуатацией. То есть вероятность отказа элемента, дожившего для момента t в некотором последующем промежутке времени зависит от значений λ(u ) только на этом промежутке, а следовательно интенсивность отказов - локальный показатель надёжности элемента на данном промежутке времени.

Тема 1.3. Надежность восстанавливаемых систем

Современные системы автоматики относятся к сложным восстанавливаемым системам. Такие системы в процессе работы, при отказе некоторых элементов ремонтируются и продолжают дальнейшую работу. Свойство систем восстанавливаться в процессе работы "закладывается" при их проектировании и обеспечивается при изготовлении, а проведение ремонтно-восстановительных операций предусмотрено в нормативно- технической документации.

Проведение ремонтно-восстановительных мероприятий является по существу еще одним способом, направленным на повышение надежности системы.

1.3.1. Показатели надежности восстанавливаемых систем

С количественной стороны такие системы кроме рассмотренных ранее показателей надежности, характеризуются еще и комплексными показателями надежности.

Комплексным показателем надежности является показатель надежности, характеризующий несколько свойств, составляющих надежность объекта.

Комплексными показателями надежности, которые наиболее широко применяются при характеристике надежности восстанавливаемых систем, являются:

Коэффициент готовности;

Коэффициент оперативной готовности;

Коэффициент технического использования.

Коэффициент готовности - вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых перерывов, в течении которых применение объекта по назначению не предусматривается.

Таким образом, коэффициент готовности характеризует одновременно два различных свойства объекта - безотказность и ремонтопригодность.

Коэффициент готовности является важным параметром, однако, он не является универсальным.

Коэффициент оперативной готовности - вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых перерывов, в течение которых применение объекта по назначению не предусматривается, и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени.

Коэффициент характеризует надежность объектов, необходимость применения которых возникает в произвольный момент времени, после которого требуется определенная безотказная работа. До этого момента аппаратура может находиться в режиме дежурства, режим применения в других рабочих функциях.

Коэффициент технического использования - отношение математического ожидания интервалов времени пребывания объектов в работоспособном состоянии за некоторый период эксплуатации к сумме математических ожиданий интервалов времени пребывания объекта в работоспособном состоянии, простоев, обусловленных техническим обслуживанием, и ремонтов за тот же период эксплуатации.

Различают вероятностные (математические) и статистические показатели надежности. Математические показатели надежности выводятся из теоретических функций распределения вероятностей отказов. Статистические показатели надежности определяются опытным путем при испытаниях объектов на базе статистических данных эксплуатации оборудования.

Надежность является функцией многих факторов, большинство из которых случайны. Отсюда ясно, что для оценки надежности объекта необходимо большое количество критериев.

Критерий надежности – это признак, по которому оценивается надежность объекта.

Критерии и характеристики надежности носят вероятностный характер, поскольку факторы, влияющие на объект, носят случайный характер и требуют статистической оценки.

Количественными характеристиками надежности могут быть:
вероятность безотказной работы;
среднее время безотказной работы;
интенсивность отказов;
частота отказов;
различные коэффициенты надежности.

1. Вероятность безотказной работы

Служит одним из основных показателей при расчетах на надежность.
Вероятность безотказной работы объекта называется вероятность того, что он будет сохранять свои параметры в заданных пределах в течение определенного промежутка времени при определенных условиях эксплуатации.

В дальнейшем полагаем, что эксплуатация объекта происходит непрерывно, продолжительность эксплуатации объекта выражена в единицах времени t и эксплуатация начата в момент времени t=0.
Обозначим P(t) вероятность безотказной работы объекта на отрезке времени . Вероятность, рассматриваемую как функцию верхней границы отрезка времени, называют также функцией надежности.
Вероятностная оценка: P(t) = 1 – Q(t), где Q(t) — вероятность отказа.

Из графика очевидно, что:
1. P(t) – невозрастающая функция времени;
2. 0 ≤ P(t) ≤ 1;
3. P(0)=1; P(∞)=0.

На практике иногда более удобной характеристикой является вероятность неисправной работы объекта или вероятность отказа:
Q(t) = 1 – P(t).
Статистическая характеристика вероятности отказов: Q*(t) = n(t)/N

2. Частота отказов

Частотой отказов называется отношение числа отказавших объектов к их общему числу перед началом испытания при условии что отказавшие объекты не ремонтируются и не заменяются новыми, т.е

a*(t) = n(t)/(NΔt)
где a*(t) — частота отказов;
n(t) – число отказавших объектов в интервале времени от t – t/2 до t+ t/2;
Δt – интервал времени;
N – число объектов, участвующих в испытании.

Частота отказов есть плотность распределения времени работы изделия до его отказа. Вероятностное определение частоты отказов a(t) = -P(t) или a(t) = Q(t).

Таким образом, между частотой отказов, вероятностью безотказной работы и вероятностью отказов при любом законе распределения времени отказов существует однозначная зависимость: Q(t) = ∫ a(t)dt.

Отказ трактуют в теории надежности как случайное событие. В основе теории лежит статистическое истолкование вероятности. Элементы и образованные из них системы рассматривают как массовые объекты, принадлежащие одной генеральной совокупности и работающие в статистически однородных условиях. Когда говорят об объекте, то в сущности имеют в виду наугад взятый объект из генеральной совокупности, представительную выборку из этой совокупности, а часто и всю генеральную совокупность.

Для массовых объектов статистическую оценку вероятности безотказной работы P(t) можно получить, обработав результаты испытаний на надежность достаточно больших выборок. Способ вычисления оценки зависит от плана испытаний.

Пусть испытания выборки из N объектов проведены без замен и восстановлений до отказа последнего объекта. Обозначим продолжительности времени до отказа каждого из объектов t 1 , …, t N . Тогда статистическая оценка:

P*(t) = 1 — 1/N ∑η(t-t k)

где η — единичная функция Хевисайда.

Для вероятности безотказной работы на определенном отрезке удобна оценка P*(t) = /N,
где n(t) – число объектов, отказавших к моменту времени t.

Частота отказов, определяемая при условии замены отказавших изделий исправными, иногда называется средней частотой отказов и обозначается ω(t).

3. Интенсивность отказов

Интенсивностью отказов λ(t) называется отношение числа отказавших объектов в единицу времени к среднему числу объектов, работающих в данный отрезок времени, при условии, что отказавшие объекты не восстанавливаются и не заменяются исправными: λ(t) = n(t)/
где N ср = /2 — среднее число объектов, исправно работавших в интервале времени Δt;
N i – число изделий, работавших в начале интервала Δt;
N i+1 – число объектов, исправно работавших в конце интервала времени Δt.

Ресурсные испытания и наблюдения над большими выборками объектов показывают, что в большинстве случаев интенсивность отказов изменяется во времени немонотонно.

Из кривой зависимости отказов от времени видно, что весь период работы объекта можно условно поделить на 3 периода.
I — й период – приработка.

Приработочные отказы являются, как правило, результатом наличия у объекта дефектов и дефектных элементов, надежность которых значительно ниже требуемого уровня. При увеличении числа элементов в изделии даже при самом строгом контроле не удается полностью исключить возможность попадания в сборку элементов, имеющих те или иные скрытые дефекты. Кроме того, к отказам в этот период могут приводить и ошибки при сборке и монтаже, а также недостаточная освоенность объекта обслуживающим персоналом.

Физическая природа таких отказов носит случайный характер и отличается от внезапных отказов нормального периода эксплуатации тем, что здесь отказы могут иметь место не при повышенных, а и при незначительных нагрузках («выжигание дефектных элементов»).
Снижение величины интенсивности отказов объекта в целом, при постоянном значении этого параметра для каждого из элементов в отдельности, как раз и объясняется «выжиганием» слабых звеньев и их заменой наиболее надежными. Чем круче кривая на этом участке, тем лучше: меньше дефектных элементов останется в изделии за короткий срок.

Чтобы повысить надежность объекта, учитывая возможность приработочных отказов, нужно:
проводить более строгую отбраковку элементов;
проводить испытания объекта на режимах близких к эксплуатационным и использовать при сборке только элементы, прошедшие испытания;
повысить качество сборки и монтажа.

Среднее время приработки определяют при испытаниях. Для особо важных случаев необходимо увеличить срок приработки в несколько раз по сравнению со средним.

II — й период – нормальная эксплуатация
Этот период характеризуется тем, что приработочные отказы уже закончились, а отказы, связанные с износом, еще не наступили. Этот период характеризуется исключительно внезапными отказами нормальных элементов, наработка на отказ которых очень велика.

Сохранение уровня интенсивности отказов на этом этапе характеризуется тем, что отказавший элемент заменяется таким же, с той же вероятностью отказа, а не лучшим, как это происходило на этапе приработки.

Отбраковка и предварительная обкатка элементов, идущих на замену отказавших, имеет для этого этапа еще большее значение.
Наибольшими возможностями в решении этой задачи обладает конструктор. Нередко изменение конструкции или облегчение режимов работы всего одного-двух элементов обеспечивает резкое повышение надежности всего объекта. Второй путь – повышение качества производства и даже чистоты производства и эксплуатации.

III – й период – износ
Период нормальной эксплуатации заканчивается, когда начинают возникать износовые отказы. Наступает третий период в жизни изделия – период износа.

Вероятность возникновения отказов из-за износов с приближением к сроку службы возрастает.

С вероятностной точки зрения отказ системы в данном промежутке времени Δt = t 2 – t 1 определяется как вероятность отказа:

∫a(t) = Q 2 (t) — Q 1 (t)

Интенсивность отказов есть условная вероятность того, что в промежуток времени Δt произойдет отказ при условии, что до этого он не произошел λ(t) = /[ΔtP(t)]
λ(t) = lim /[ΔtP(t)] = / = Q"(t)/P(t) = -P"(t)/P(t)
так как a(t) = -P"(t), то λ(t) = a(t)/P(t).

Эти выражения устанавливают зависимость между вероятностью безотказной работы, частотой и интенсивностью отказов. Если a(t) – невозрастающая функция, то справедливо соотношение:
ω(t) ≥ λ(t) ≥ a(t).

4. Среднее время безотказной работы

Средним временем безотказной работы называется математическое ожидание времени безотказной работы.

Вероятностное определение: среднее время безотказной работы равно площади под кривой вероятности безотказной работы.

Статистическое определение: T* = ∑θ i /N 0
где θ I – время работы i-го объекта до отказа;
N 0 – начальное число объектов.

Очевидно, что параметр Т* не может полностью и удовлетворительно характеризовать надежность систем длительного пользования, так как является характеристикой надежности только до первого отказа. Поэтому надежность систем длительного использования характеризуют средним временем между двумя соседними отказами или наработкой на отказ t ср:
t ср = ∑θ i /n = 1/ω(t),
где n – число отказов за время t;
θ i – время работы объекта между (i-1)-м и i-м отказами.

Наработка на отказ – среднее значение времени между соседними отказами при условии восстановления отказавшего элемента.

Частотой отказов называется отношение числа отказавших образцов аппаратуры в единицу времени к числу образцов, первоначально установленных на испытание при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

Так как число отказавших образцов в интервале времени может зависеть от расположения этого промежутка по оси времени, то чистота отказов является функцией времени. Эта характеристика и дальнейшем обозначается.

Интервал времени;

Число образцов аппаратуры, первоначально установленных на испытание

Выражение (10) является статистическим определением частоты отказов. Этой количественной характеристике надежности легко дать, вероятностное определение. Вычислим в выражении (10) , т. е. число образцов, отказавших в интервале.

Очевидно:

где N() -- число образцов, исправно работающих к моменту времени;

Число образцов, исправно работающих к моменту времени;

При достаточно большом числе образцов справедливы соотношения:

Подставляя (11) в (10) и учитывая (12), (13), получим:

Устремляя к нулю и переходя к пределу, получим:

или с учетом (4):

Из этого выражения видно, что частота отказов есть плотность распределения времени работы аппаратуры до ее отказа. Численно она равна взятой с обратным знаком производной от вероятности безотказной работы. Выражение (16) является вероятностным определением частоты отказов.

Таким образом, между частотой отказов, вероятностью безотказной работы и вероятностью отказов при любом законе распределения времени возникновения отказов существуют однозначные зависимости. Эти зависимости на основании (16) и (4) имеют вид:

Средней частотой отказов называется отношение числа отказавших образцов в единицу времени к числу испытываемых образцов при условии, что все образцы, вышедшие из строя, заменяются исправными (новыми или восстановленными).

Интенсивность отказов

Интенсивностью отказов называется отношение числа отказавших образцов аппаратуры в единицу времени к среднему числу образцов, исправно работающих в данный отрезок времени при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

где - число отказавших образцов в интервале времени от до;

Интервал времени;

Среднее число исправно работающих образцов в интервале;

Число исправно работающих образцов в начале интервала;

Число исправно работающих образцов в конце интервала.

Выражение (19) является статистическим определением интенсивности отказов. Для вероятностного представления этой характеристики установим зависимость между интенсивностью отказов, вероятностью безотказной работы и частотой отказов.

Подставим в выражение (19) вместо его значение из (11) и (12). Тогда получим:

Учитывая, найдем:

Устремляем к нулю и переходя к пределу, получим:

Интегрируя, получим:

Среднее время безотказной работы

Среднее время безотказной работы называется математическое ожидание времени безотказной работы. Среднее время безотказной работы определяется зависимостью:

Для определения среднего времени безотказной работы из статических данных пользуются формулой:

где -время безотказной работы i-го образца;

N0 - число образцов, над которыми проводится испытание.

Подставим в выражение (25) вместо производную от безотказной работы с обратным знаком и выполним интегрирование по частям. Получим:

Так как не может иметь отрицательное значение, то заменится на 0, т.к. и, тогда:

Мы выпустили новую книгу «Контент-маркетинг в социальных сетях: Как засесть в голову подписчиков и влюбить их в свой бренд».

Вы работаете над продвижением своего блога? Пытаетесь увеличить продажи интернет-магазина? Тогда проблема снижения должна быть вам близка.

Что такое показатель отказов сайта?

Рассмотрим на примере. За месяц на сайте побывало всего 140 посетителей, 60 из них просмотрели только одну страницу и закрыли ваш ресурс, остальные 80 смотрели две и более страниц. 60 делим на 140 и умножаем на 100%. В итоге получаем процент отказов на сайте в 43%.

Нормальный процент отказов на сайте - какой он?

Добиться нулевого уровня практически невозможно. Даже у популярных интернет-магазинов отказы составляют 30-40 %. Среднее значение для разных сайтов сильно отличается, и нам необходимо обязательно это учитывать:

  • для сайта-портала или сервис-сайта это значение примерно от 10% до 30%;
  • у интернет-магазинов нормальный процент отказов на сайте уже повыше - 20-40%;
  • еще больше у информационных сайтов - 40-60%.

Не стоит ориентироваться на какую-то конкретную цифру. Важнее, чтобы показатель отказов был меньше, чем у конкурентов.

Причины отказа на сайте: как удержать посетителей на сайте?

1. Скорость загрузки

Рядовой пользователь стремится получить всю требуемую информацию как можно скорее. Поверьте, несколько секунд ожидания могут стать веской причиной, по которой сайт обойдут стороной. Поставьте себя на место посетителя. Вряд ли вы будете ждать более 10 секунд. Следует поискать ошибки сайта, отражающиеся на этом параметре. Кроме того, уберите рекламу перед контентом. Многие рекламные сервера работают чрезвычайно медленно, поэтому вероятность немедленного прощания с сайтом очень высока.

2. Избыток рекламы

Запомните навсегда: сайт – не новогодняя елка.

Мигающе-сверкающие элементы действительно притягивают взгляд, но при этом вызывают стойкое отвращение посетителей. К такому эффекту приводят глупые заголовки в стиле желтой прессы, всплывающие окна. Ваш ресурс наполнен действительно интересным контентом? Смело запускайте всплывающую рекламу спустя минуту после входа посетителя - это поможет уменьшить отказы на сайте.

3. Понятная навигация, грамотный поиск

Думаете, интуитивно понятные алгоритмы важны только в компьютерных играх? Дайте возможность гостю почувствовать себя дураком, больше его никогда не встретите. Безусловно, стремление к уникальности и неповторимости похвально. Однако подобная оригинальность скверно скажется на уровне отказов, если вы будете заставлять посетителей разыскивать информацию.

Отдельно следует упомянуть эффективный инструмент - поиск. Его отсутствие на сайтах с большим количеством страниц и товаров доставляет уйму неудобств, обычный гость предпочтет быстро покинуть сайт, поискать нужную информацию на другом ресурсе.

4. Музыка, видео – явные враги

В отличие от клиентов супермаркета, где спрятаться от музыкального фона нет возможности, ваши гости всегда могут моментально распрощаться с ним. Люди устали от ненужных картинок, звуков. Вам понравится красивая мелодия, нескончаемо играющая по кругу? Единственным желанием будет ее остановка. Отчаявшись выключить музыку, посетитель покинет сайт.

Обсудим видео, здесь ситуация еще хуже, чем с музыкой. Многие пользователи отказываются платить за трафик навязываемого видеоролика. Такое поведение вебмастера напрямую ассоциируется с вором, лезущим в карман. Нравится подобная роль? Тогда откажитесь от лишних атрибутов.

Как удержать посетителя на сайте? Не заставлять его слушать и смотреть то, что он не хочет.

5. Отмените регистрацию

О высокой конкуренции в сети вы знаете. А свободное пользование многочисленными сайтами без малейшего намека на регистрацию встречали? Многие сайты предлагают провести оформление через аккаунты социальных сетей. Но менталитет и природная лень заставляют искать места потеплее, где «прописка» полностью отсутствует. Уберете раздражающую гостей функцию сегодня - перестанете удивляться количеству отказов завтра.

6. Обновляйте информацию

Цены двухлетней давности, каталог одежды, потерявшей актуальность 10 лет назад - веские причины отказа на сайте. Сменили номера телефонов, условия доставки товаров - немедленно обновите данные сайта. Ваше детище отлично оформлено и его информация актуальна? Тогда смело добавляйте интересные статьи. Новоиспеченные посетители часто изучают даты последних публикаций, постарайтесь порадовать аудиторию.

7. Используйте страничку 404 правильно

От программных ошибок невозможно застраховаться, поэтому появление страницы 404 следует предусмотреть. Благодаря подсказкам Google улучшить эту страницу легко, воспользовавшись Google Webmaster Tools. Простое добавление ссылки на главную страничку, окна поиска поможет сгладить неловкую ситуацию с 404-й страницей. Осталось расщедриться на юмор, дизайн и проблему можно считать решенной.

8. Добавьте контрастов, разберитесь со шрифтами

Нужны минимальные шаги, облегчающие посетителям чтение предлагаемой информации. Именно контрастный фон, яркие картинки помогут выделить зоны сайта, нуждающиеся в привлечении особого внимания.

Идеальный шрифт выбрать достаточно легко. Следует сверстать статью, внимательно вычитать ее. Если в процессе чтения глазам комфортно, значит, все сделано верно. Также необходимо учесть влияние на читаемость цвета контента, типа шрифта, межстрочного интервала, цвета подложки, наличия абзацев.

9. Улучшайте дизайн

Позволить себе дешевое непрофессиональное оформление может лишь новичок. Подобная экономия заставит посетителей усомниться в серьезности владельца ресурса и правдивости размещенной на сайте информации.

Представьте себе, что входите в неопрятный офис или магазин, в котором десятилетиями не переклеивались обои. Приятно? Также и посетители спешат на аккуратные, красиво оформленные сайты.

10. Избавьтесь от серых простыней, улучшите качество текста

Каким бы интересным и уникальным не был размещенный на страничке текст, его оформлению следует уделить хотя бы минимальное внимание. Яркие заголовки, толковые списки, правильно выделенные абзацы помогут донести до читателя нужную информацию.

Воспользуйтесь приведенным выше советом. Оформите статьи правильно и посетители дочитают их до конца!

Кроме того, следует избавиться от коряво вписанных ключевых фраз, орфографических и пунктуационных ошибок. Если вы работаете с узкоспециализированной тематикой, то постарайтесь аккуратно оперировать терминами. Расщедритесь, составив мини-словарь или просто дав в статьях четкие определения.

11. Предложите дополнительный контент

Если вы знакомы с термином "сопутствующие товары", половина дела сделана. Представьте процесс приобретения в магазине пива. В качестве товаров-дополнителей отлично подойдут рыба, сухарики, чипсы. Этот принцип применяется и при работе над контентом сайта. Например, женщина выбирает в магазине стильное платье, предложите ей посмотреть раздел современной бижутерии, элитного нижнего белья. Простейший прием поможет увеличить количество просматриваемых страниц и сделает более привлекательным весь ресурс в целом.

12. Исключительно полезная информация

Грамотные, уникальные, но абсолютно бесполезные тексты также входят в причины отказа на сайте. Посетитель, зашедший посмотреть стоимость ортопедических матрасов, будет разочарован, увидев пространные рассуждения об их актуальности, высоком качестве и пользе для здоровья. Давайте конкретные ответы по определенному запросу, перестаньте лить воду.

Конечно, предоставленный перечень раздражающих посетителей факторов не полон. Но работы вам предстоит предостаточно. Воспользовавшись предложенными советами, вы сможете в разы уменьшить показатель отказов сайта.

1.1 Вероятность безотказной работы

Вероятностью безотказной работы называется вероятность того, что при определенных условиях эксплуатации, в пределах заданной наработки не произойдет ни одного отказа.
Вероятность безотказной работы обозначается как P (l ) , которая определяется по формуле (1.1):

где N 0 - число элементов в начале испытания; r (l ) - число отказов элементов к моменту наработки. Следует отметить, что чем больше величина N 0 , тем с большей точностью можно рассчитать вероятность P (l).
В начале эксплуатации исправного локомотива P (0) = 1, так как при пробеге l = 0 вероятность того, что ни один элемент не откажет, принимает максимальное значение - 1. С ростом пробега l вероятность P (l ) будет уменьшаться. В процессе приближения срока эксплуатации к бесконечно большой величине вероятность безотказной работы будет стремиться к нулю P (l →∞) = 0. Таким образом в процессе наработки величина вероятности безотказной работы изменяется в пределах от 1 до 0. Характер изменения вероятности безотказной работы в функции пробега показан на рис. 1.1.

Рис.2.1. График изменения вероятности безотказной работы P(l) в зависимости от наработки

Основными достоинствами использования данного показателя при расчетах является два фактора: во-первых, вероятность безотказной работы охватывает все факторы, влияющие на надежность элементов, позволяя достаточно просто судить о его надежности, т.к. чем больше величина P (l ), тем выше надежность; во-вторых, вероятность безотказной работы может быть использована в расчетах надежности сложных систем, состоящих из более чем одного элемента.

1.2 Вероятность отказа

Вероятностью отказа называют вероятность того, что при определенных условиях эксплуатации, в предела х заданной наработки произойдет хотя бы один отказ.
Вероятность отказа обозначается как Q (l ), которая определяется по формуле (1.2):

В начале эксплуатации исправного локомотива Q (0) = 0, так как при пробеге l = 0 вероятность того, что хотя бы один элемент откажет, принимает минимальное значение - 0. С ростом пробега l вероятность отказа Q (l ) будет увеличиваться. В процессе приближения срока эксплуатации к бесконечно большой величине вероятность отказа будет стремиться к единице Q (l →∞ ) = 1. Таким образом в процессе наработки величина вероятности отказа изменяется в пределах от 0 до 1. Характер изменения вероятности отказа в функции пробега показан на рис. 1.2. Вероятность безотказной работы и вероятность отказа являются событиями противоположными и несовместимыми.

Рис.2.2. График изменения вероятности отказа Q(l) в зависимости от наработки

1.3 Частота отказов

Частота отказов - это отношение числа элементов в единицу времени или пробега отнесенного к первоначальному числу испытуемых элементов. Другими словами частота отказов является показателем, характеризующим скорость изменения вероятности отказов и вероятности безотказной работы по мере роста длительности работы.
Частота отказов обозначается как и определяется по формуле (1.3):

где - количество отказавших элементов за промежуток пробега .
Данный показатель позволяет судить по его величине о числе элементов, которые откажут на каком-то промежутке времени или пробега, также по его величине можно рассчитать количество требуемых запасных частей.
Характер изменения частоты отказов в функции пробега показан на рис. 1.3.


Рис. 1.3. График изменения частоты отказов в зависимости от наработки

1.4 Интенсивность отказов

Интенсивность отказов представляет собой условную плотность возникновения отказа объекта, определяемую для рассматриваемого момента времени или наработки при условии, что до этого момента отказ не возник. Иначе интенсивность отказов - это отношение числа отказавших элементов в единицу времени или пробега к числу исправно работающих элементов в данный отрезок времени.
Интенсивность отказов обозначается как и определяется по формуле (1.4):

где

Как правило, интенсивность отказов является неубывающей функцией времени. Интенсивность отказов обычно применяется для оценки склонности к отказам в различные моменты работы объектов.
На рис. 1.4. представлен теоретический характер изменения интенсивности отказов в функции пробега.

Рис. 1.4. График изменения интенсивности отказов в зависимости от наработки

На графике изменения интенсивности отказов, изображенном на рис. 1.4. можно выделить три основных этапа отражающих процесс экс-плуатации элемента или объекта в целом.
Первый этап, который также называется этапом приработки, характеризуется увеличением интенсивности отказов в начальный период эксплуатации. Причиной роста интенсивности отказов на данном этапе являются скрытые дефекты производственного характера.
Второй этап, или период нормальной работы, характеризуется стремлением интенсивности отказов к постоянному значению. В течение этого периода могут возникать случайные отказы, в связи с появлением внезапной концентрации нагрузки, превышающей предел прочности элемента.
Третий этап, так называемый период форсированного старения. Характеризуется возникновением износовых отказов. Дальнейшая эксплуатация элемента без его замены становится экономически не рациональной.

1.5 Средняя наработка до отказа

Средняя наработка до отказа - это средний пробег безотказной работы элемента до отказа.
Средняя наработка до отказа обозначается как L 1 и определяется по формуле (1.5):

где l i - наработка до отказа элемента; r i - число отказов.
Средняя наработка до отказа может быть использована для предварительного определения сроков ремонта или замены элемента.

1.6 Среднее значение параметра потока отказов

Среднее значение параметра потока отказов характеризует среднюю плотность вероятности возникновения отказа объекта, определяемая для рассматриваемого момента времени.
Среднее значение параметра потока отказов обозначается как W ср и определяется по формуле (1.6):

1.7 Пример расчета показателей безотказности

Исходные данные.
В течение пробега от 0 до 600 тыс. км., в локомотивном депо произведен сбор информации по отказам ТЭД. При этом количество исправных ТЭД в начале периода эксплуатации составляло N0 = 180 шт. Суммарное количество отказавших ТЭД за анализируемый период составило ∑r(600000) = 60. Интервал пробега принять равным 100 тыс. км. При этом количество отказавших ТЭД по каждому участку составило: 2, 12, 16, 10, 14, 6.

Требуется.
Необходимо рассчитать показатели безотказности и построить их зависимости изменения во времени.

Сначала необходимо заполнить таблицу исходных данных так, как это показано в табл. 1.1.

Таблица 1.1.

Исходные данные к расчету
, тыс. км 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600
2 12 16 10 14 6
2 14 30 40 54 60

Первоначально по уравнению (1.1) определим для каждого участка пробега величину вероятности безотказной работы. Так, для участка от 0 до 100 и от 100 до 200 тыс. км. пробега вероятность безотказной работы составит:

Произведем расчет частоты отказов по уравнению (1.3).

Тогда интенсивность отказов на участке 0-100 тыс.км. будет равна:

Аналогичным образом определим величину интенсивности отказов для интервала 100-200 тыс. км.

По уравнениям (1.5 и 1.6) определим среднюю наработку до отказа и среднее значение параметра потока отказов.

Систематизируем полученные результаты расчета и представим их в виде таблицы (табл. 1.2.).

Таблица 1.2.

Результаты расчета показателей безотказности
, тыс.км. 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600
2 12 16 10 14 6
2 14 30 40 54 60
P(l) 0,989 0,922 0,833 0,778 0,7 0,667
Q(l) 0,011 0,078 0,167 0,222 0,3 0,333
10 -7 , 1/км 1,111 6,667 8,889 5,556 7,778 3,333
10 -7 , 1/км 1,117 6,977 10,127 6,897 10,526 4,878

Приведем характер изменения вероятности безотказной работы ТЭД в зависимости от пробега (рис. 1.5.). Необходимо отметить, что первой точкой на графике, т.е. при пробеге равном 0, величина вероятности безотказной работы примет максимальное значение - 1.

Рис. 1.5. График изменения вероятности безотказной работы в зависимости от наработки

Приведем характер изменения вероятности отказа ТЭД в зависимости от пробега (рис. 1.6.). Необходимо отметить, что первой точкой на графике, т.е. при пробеге равном 0, величина вероятности отказа примет минимальное значение - 0.

Рис. 1.6. График изменения вероятности отказа в зависимости от наработки

Приведем характер изменения частоты отказов ТЭД в зависимости от пробега (рис. 1.7.).

Рис. 1.7. График изменения частоты отказов в зависимости от наработки

На рис. 1.8. представлена зависимость изменения интенсивности отказов от наработки.

Рис. 1.8. График изменения интенсивности отказов в зависимости от наработки

2.1 Экспоненциальный закон распределения случайных величин

Экспоненциальный закон достаточно точно описывает надежность узлов при внезапных отказах, имеющих случайный характер. Попытки применить его для других типов и случаев отказов, особенно постепенных, вызванных износом и изменением физико-химических свойств элементов показали его недостаточную приемлемость.

Исходные данные.
В результате испытания десяти топливных насосов высокого давления получены наработки их до отказа: 400, 440, 500, 600, 670, 700, 800, 1200, 1600, 1800 ч. Предполагая, что наработка до отказа топливных насосов подчиняется экспоненциальному закону распределения.

Требуется.
Оценить величину интенсивности отказов, а также рассчитать вероятность безотказной работы за первые 500 ч. и вероятность отказа в промежутке времени между 800 и 900 ч. работы дизеля.

Во-первых, определим величину средней наработки топливных насосов до отказа по уравнению:

Затем рассчитываем величину интенсивности отказов:

Величина вероятности безотказной работы топливных насосов при наработке 500 ч составит:

Вероятность отказа в промежутке между 800 и 900 ч. работы насосов составит:

2.2 Закон распределения Вэйбулла-Гнеденко

Закон распределения Вейбулла-Гнеденко получил широкое распространение и используется применительно к системам, состоящим из рядов элементов, соединенных последовательно с точки зрения обеспечения безотказности системы. Например, системы, обслуживающие дизель-генераторную установку: смазки, охлаждения, питания топливом, воздухом и т.д.

Исходные данные.
Время простоя тепловозов в неплановых ремонтах по вине вспомогательного оборудования подчиняется закону распределения Вейбулла-Гнеденко с параметрами b=2 и a=46.

Требуется.
Необходимо определить вероятность выхода тепловозов из неплановых ремонтов после 24 ч. простоя и время простоя, в течение которого работоспособность будет восстановлена с вероятностью 0,95.

Найдем вероятность восстановления работоспособности локомотива после простоя его в депо в течение суток по уравнению:

Для определения времени восстановления работоспособности локомотива с заданной величиной доверительной вероятности также используем выражение:

2.3 Закон распределения Рэлея

Закон распределения Рэлея используется в основном для анализа работы элементов, имеющих ярко выраженный эффект старения (элементы электрооборудования, различного рода уплотнения, шайбы, прокладки, изготовленные из резиновых или синтетических материалов).

Исходные данные.
Известно, что наработки контакторов до отказа по параметрам старения изоляции катушек можно описать функцией распределения Рэлея с параметром S = 260 тыс.км.

Требуется.
Для величины наработки 120 тыс.км. необходимо определить вероятность безотказной работы, интенсивность отказов и среднюю наработку до первого отказа катушки электромагнитного контактора.

3.1 Основное соединение элементов

Система, состоящая из нескольких независимых элементов, связанных функционально таким образом, что отказ любого из них вызывает отказ системы, отображается расчетной структурной схемой безотказной работы с последовательно соединенными событиями безотказной работы элементов.

Исходные данные.
Нерезервированная система состоит из 5 элементов. Интенсивности их отказов соответственно равны 0,00007; 0,00005; 0,00004; 0,00006; 0,00004 ч-1

Требуется.
Необходимо определить показатели надежности системы: интенсивность отказов, среднее время наработки до отказа, вероятность безотказной работы, частота отказов. Показатели надежности P(l) и a(l) получить в интервале от 0 до 1000 часов с шагом в 100 часов.

Вычислим интенсивность отказа и среднюю наработку до отказа по следующим уравнениям:

Значения вероятности безотказной работы и частоты отказов получим, используя уравнения приведенные к виду:

Результаты расчета P(l) и a(l) на интервале от 0 до 1000 часов работы представим в виде табл. 3.1.

Таблица 3.1.

Результаты расчета вероятности безотказной работы и частоты отказов системы на интервале времени от 0 до 1000 ч.
l , час P(l) a(l) , час -1
0 1 0,00026
100 0,974355 0,000253
200 0,949329 0,000247
300 0,924964 0,00024
400 0,901225 0,000234
500 0,878095 0,000228
600 0,855559 0,000222
700 0,833601 0,000217
800 0,812207 0,000211
900 0,791362 0,000206
1000 0,771052 0,0002

Графическая иллюстрация P(l) и a(l) на участке до средней наработки до отказа представлена на рис. 3.1, 3.2.

Рис. 3.1. Вероятность безотказной работы системы.

Рис. 3.2. Частота отказов системы.

3.2 Резервное соединение элементов

Исходные данные.
На рис. 3.3 и 3.4 показаны две структурные схемы соединения элементов: общего (рис. 3.3) и поэлементного резервирования (рис. 3.4). Вероятности безотказной работы элементов соответственно равны P1(l) = P ’1(l) = 0,95; P2(l) = P’2(l) = 0,9; P3(l) = P ’3(l) = 0,85.

Рис. 3.3. Схема системы с общим резервированием.

Рис. 3.4. Схема системы с поэлементным резервированием.

Вероятность безотказной работы блока из трех элементов без резервирования рассчитаем по выражению:

Вероятность безотказной работы той же системы при общем резервировании (рис. 3.3) составит:

Вероятности безотказной работы каждого из трех блоков при поэлементном резервировании (рис. 3.4) будут равны:

Вероятность безотказной работы системы при поэлементном резервировании составит:

Таким образом, поэлементное резервирование дает более существенное увеличение надежности (вероятность безотказной работы возросла с 0,925 до 0,965, т.е. на 4%).

Исходные данные.
На рис. 3.5 представлена система с комбинированным соединением элементов. При этом вероятности безотказной работы элементов имеют следующие значения: P1=0,8; Р2=0,9; Р3=0,95; Р4=0,97.

Требуется.
Необходимо определить надежность системы. Также необходимо определить надежность этой же системы при условии, что резервные элементы отсутствуют.

Рис.3.5. Схема системы при комбинированном функционировании элементов.

Для расчета в исходной системе необходимо выделить основные блоки. В представленной системе их три (рис. 3.6). Далее рассчитаем надежность каждого блока в отдельности, а затем найдем надежность всей системы.

Рис. 3.6. Сблокированная схема.

Надежность системы без резервирования составит:

Таким образом, система без резервирования является на 28% менее надежной, чем система с резервированием.